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The following report discusses the use of simlilarity flows in
certain hydrodynemic impect problems, as & basis for approximate analytical
sclutions. After a qualitative discussion of variocus ways - vwhich such
solutions may be cbtained, e single derivation is obtained .7 a class of one-
parameter similarity flows for problems in 1, 2 and 3 dimensions, which
includes substantially all those used previously, and allows the superposition
of constant uniform motions. The perturbation equations which relste the
asymptotic form of the sctual solution to such similarity flows {under
some conditions) are explicitly yormulated and the equations of the
characteristic surfaces which determine their behsvior &re derived.



I. INTRCDICTION

Because of their non-linear form, the equations of hydrodynamics
(and the problems they represent) are not amena‘le to general analytical
solutions. On the other hand, they are oftern so complex that direct
numerical solutions, if at all possible, become uneconomic and/or un-
convineing without some kind of analytical guldance. This is particulerly
true in the case of problems involving shocks, where the singular nature
of the flovw may lead to serious numerical difficulties if its implications
for the solution are not properly understood.

It therefore becomes necessary to utilirze those anslytical methods
that are available t0 provide at least s qualitative underctarding, if
possible, of the solution of the problem posed, and even if not, a guide
t¢ the numerical approach. There are = variety of such technigues
available in the various branches of hydrodynamics, and though they are
by no means always adequate, they often provide the first step of an
approximate analytical approach which meets the need described above.
These methods involve One or more of the following:

1. the use of special solutions, e.g., conformal
mepping in stationary incompressible flows,
Isgendre's transformation in more general problems,
and "similarity" (homological) solutions in problems
involving explosions and/or boundary layers;

2. perturbation techniques around such solutions (in
particuiar singular perturbation methods for
boundary layer problems);-and

3. integral methods based on the conservative properties
of the flow. (These seem particularly applicable to
provlems involving shocks.)
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In the case of hypervelocity impacts, one is confronted with
problems which lack complete symmelry and involve severe discontinuities
(shocks), as well as regions of smooth flow, and 50 Ve may expect a need
for all the methods cited above in order to provide a satisfactory
analytical foundation for understanding both the experimentsl and
numerical results. Despite their general difficulty, impect vroblems
have certain characteristics whieh suggest that the above cited methods
are particularly applicsble. The initial and boundery conditions are
usually sufficiently localized in space and time as to effectively
approximete an explosion, and a correspondingly similar "similarity”
solution. The deviation of these conditions from those necessary for
& similarity solution, as well as the strong devisticr near the .
shock, is confined to g relatively small region of sSpace and time, msking
possible effective perturbation methods (slbeit of & singular nature in
the second case),

There are thus seversl approaches availasble for providing an
approximate snalytical framework for understanding and further developing
quantitative {i.e. generally nznéarica,l) solutions of hypervelocity impact
probiems. The first step in each of these is the establishment of some
suitable "spproximating” similarity solution. This may then be used in
varicus ways:
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1. as the first stage in an approximation or perturbation
procedure in some parameter of the problem (e.g. the
shock strength), (Sakurai); (5)

2. as a general form (with variable perameters) in an integral
method, in which the parameters are determined phenomenc-
log’cally from the conservation lawe (Chernyi) ;(2)

{see 8lso Teichmann(g ) and Stugrt(&))

3. as an asymptotic solution, in which cases it must be
shown that the initial and boundary variations decay
sultably as the process develops.



(1) and (2) sbove have received & good deal of attention in the
cases Of point expiosions and hypersonic flow, in most cases with a
certain amount of success. In the case of hypervelocity impect the
problems are more difficult (largely because of equation-of-state
limitations). Nevertheless some progress has been made: method (1)
has been applied by Raegé) using results of Sakurai(S) and Oshima in the
explosive case, and & version of method (2) has been used by Raizer.(l)
The third method indicated sbove does not seem to have been used. It
involves rather more mathematical profundity even in its formulation, but
if successfully carried out provides a more satisfactory conceptval
framework for both of the other methods cited, as well as for new ones
which may be developed. It is not proposed to carry such & rather
difficult program through here. What will be done below is to give a
urified derivation of the various one dimensional similarity solutions
used by Raizer and cthers, and briefly to formulate the mathemutical
problems of the asymptotic behavior of actual solutions.

Tt.2 effective utilization of a similarity flow {or, indeed, any
other flow) as & first step in an approximation procedure depends strongly
on its simplicity and perspiculty. In 8ll cases of interest, both for
explosions and impacts, attention has been restricted to one-dimensional
(or more strictly spesking, one-parameter) solutions, though the physical
problem itself may of course be multi-dimensional. This restriction

implies a substantial degree of geometric symmetry, more specifically,
limitation to plane, spherically symmetric, and axial or transverse
cylindrically symmetric problems. The question of sry deviations from
such symretry will not even be tcuched on here.



II. SIMPLE SIMILARITY FLOWS

One thus considers the basic hydrodynamic equatione (for a perfest
gas) in the form

3v = - ,
pa—t'}‘g (VO?V}ﬁ-?P

G ™ +T 9w ) -0

. . y g
Following -.he general method of Miehal{?) &5 ocutlined by'Margan(“} and
Manohar, (9) one searches for a one parameter set of transformations

t - bt

— pury

r - Ea r

P9

. & _

P~ Dbp
whicl leave the equations invariant. (Note the requirement p - p imposed
by the presence of an extarior medium.) One easily finds

o - 1

B

Introducing
5 = /tY
V. v
2ig._11
P = p/t {a-1)



the equations became
7 - Ve (Veas) .9 =0
pl{a-1)V + (V2) . 9V] = - oP
2(e-1) [Pp™ 4+ (V-aB) - 9(2p™)]1 = 0

All the gquantities are now functions of s alone, and ¥ now applies to s.

For simplicity (tractability!) one now searches for & solution of
the form

?} = ;{ + T g
where A 1s & constant vector and I' & constant dyadic (metrix), Then

?-\?stracef’-_-a, sa8y

Let
E=0 «0al
and U=V-as
=A+E

the equations then have the form
(54»53) *Up +8 =0
(T+(e-2)1)% + T(T-1)3 + § YP=0

(A+2s) - 9(Bp™Y) + 2(a-1)Pp™¥ = 0

The first ard last equations may be sclved by the method of charscteristics.
Placing

¥ =logp/o

one has
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with
== V=1 A=Y 5
= % p-po; :Q; '_'c'r”o‘
for the initial conditions. Hence
- gg
- - b - - -
U= v, - T S,+Es=c¢ (Vo = aso) .

Similarly, putting ¥ = log the third equation gives

o)

- 2lg=1} " = —
U=e (vc - ctsc)

o

whence

2{a-1},
x = (v +(—§-")$

2{a=1
2 _ (L)Y + (&
PO 90
9P = {y +2—(§—'1‘1)PY§—.

Inserting these quantities into the second equation one finds {eventually!)

iz .

8

—

)7*}64-—5?94-&'5.'1 (1 -¢ ar)s

= =1
s=2" (l.e o

U. (C+ (@-11) (7 -T5)+0- (F-l)l";-(ayw-a(a-l))gao

A+=28) T+ (@-1)E+ E+23) (r-1)rs

Y + aﬂlg(g-l - l

pﬁz (ay + 2(a-1)) (59;)

A P+ (@) E+E(F @+ @11)E+(C-1)1] 3

+58 [

i3

r-1rs




Since = is & 3 dimensional matrix (dyadic) all functions of E may be

written as the sum of 3 terms ... 1 + ... E + ... 22; the coefficients

&bove will involve the proper values c. of =, and the functions e'(¢/a)ci,~
and possibly their derivatives up to second order, Since p = pge*, the
coefficients of terms involving derivatives must vanish, Since only one term
appesrs on the right of the equation, the bilinear term s must vanish on

the left, Hence one must have

1

' {r-1)T =0

i.e., (T -al) T -1)T =0

To aveid inessential complications for the present let T = r, i,e. T is
supposed symmetrie, implying ¢ X V = 0 & reasonable assumption for many
applications, Thus

T-01)(T-1)T=0
Hence ¢ and/or 1 and/or O must be proper values of ', The case [ = 0
corresponds to uniform motion, and is uninteresting, The case
Jr

r=1 o0
0]

L}

corresponds to & plane situation, the case

1

b
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to a cylindrieal (line source) configuraticn, end the caze ' = 1 to a
sphericnlly symmetric or a polnt cylindrically symmetric situation. The
presence of the vector 2 (which is generally indepemdent of ') allows a
superposition of uniform and expanding (contracting) motions. The
parameter o must be determined by the exact shock conditions, by tke

properties of the perturbation solution, or by the integral relationms,

The specific solutions for these cases are given by RaiZer,(l)

and their combination with conservation laws discussed there,
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III. ASYMPTOTIC BEJAVIOR; PERTURBATION EQUATIONS

If ¢ is & vector representing the dependent varjables, the hydro-
dynamic equations have the form

- . )
5t - X (@)

where X is a differential operatcr linear in the derivatives. A similarity
transformation {of the type considered above) implies the existence of &

transformation operastor S such that

is independent of t. If

then

o2 4
%~ X (¢) - X (s8)

]

X (S% - ¥) - X (S%)
~ X' (s8) ¥

b b

plus higher order terms.

These first order perturbation equations have
the formal sclution

t

I, %' (se) at

¥(t) = ¢ ¥(o)

diliseg ‘lliiiﬂm“iimm!mnu““””"Mellﬂ‘llu

Thus, it the set of equations admits such a similarity transformation

S,

it is conceivable that a similarity solution $ can be found such thsat
¥(t} - 0 as t » =, even though ¥(0) # O may be large.

I

BEven if the equsetions do not admit an exact similarity solution
(e.g., due to equation ¢f state Gifficulties), it is possible that

approximations to the egquations do so, and that the remaining terms may

be treated as an inhomcgeneous perturbation, which under certain conditions

- 0 as t = « in analogy to ihe right hand side of ¥(t) above.

i i

i




To conclude, it is of interest to write down the perturbation
eque.ions for the type of similarity transformation given above. Using

the notation above, one writes

R(Z) + G(t,5)

i

o(t,T) = p(t,3)

W(6,7) = $(1,3) = FHIE) + (L3

It

t2(&-1)

p(t,r) - p(t,8) P(E) + q(%,8)

where R(S) has now been written in place of p{(€). The perturbation

equations have the form

vhere R = (g, ¥, q).

e u, t¥Rr, g,
1 ..
0 ] EUi 3 C ]
i 1,
D = O 3 O 3 t di )
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These perturbatisp equaticns have the characteristic surfaces determined
by

1
P T U9 =4 [ yP (Z ¢,)

The sclutions of the equations have not yet been deriveq f-p the cases

considered here.
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